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Abstract. Interpretable machine learning addresses the black-box nature of deep
neural networks. Visual prototypes have been suggested for intrinsically inter-
pretable image recognition, as alternative to post-hoc explanations that only ap-
proximate a trained model. Aiming for better interpretability and fewer prototypes
to not overwhelm a user, we propose the Neural Prototype Tree (ProtoTree), a
deep learning method that includes prototypes in a hierarchical decision tree to
faithfully visualize the entire model. In addition to global interpretability, a path
in the tree explains a single prediction. Each node in our binary tree contains
a trainable prototypical part. The presence or absence of this learned prototype
in an image determines the routing through a node. Decision making is there-
fore similar to human reasoning: Does the bird have a red throat? And an elon-
gated beak? Then it’s a hummingbird! We tune the accuracy-interpretability trade-
off using ensembling and pruning. We apply pruning without sacrificing accu-
racy, resulting in a small tree with only 8 learned prototypes along a path to clas-
sify a bird from 200 species. An ensemble of 5 ProtoTrees achieves competitive
accuracy on the CUB-200-2011 and Stanford Cars data sets. Code is available
at https://github.com/M-Nauta/ProtoTree. Full paper published at
CVPR 2021.
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1. Introduction

There is an ongoing scientific dispute between simple, interpretable models and com-
plex black boxes, such as Deep Neural Networks (DNNs). DNNs have achieved supe-
rior performance, but their complexity has led to an increasing demand for interpretabil-
ity [1]. In contrast, decision trees are easy to understand and interpret [2,3], because
they transparently arrange decision rules in a hierarchical structure. Their predictive per-
formance is however far from competitive for computer vision tasks. We address this
so-called ‘accuracy-interpretability trade-off’ [1,4] by combining the expressiveness of
deep learning with the interpretability of decision trees.

We present the Neural Prototype Tree, ProtoTree in short, an intrinsically inter-
pretable method for fine-grained image recognition. A ProtoTree has the representational
power of a neural network, and contains a built-in binary decision tree structure, as shown
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Figure 1. Example of a ProtoTree. A ProtoTree is a globally interpretable model faithfully explaining its entire
behaviour (left, partially shown) and additionally the reasoning process for a single prediction can be followed
(right): the presence of a red chest and black wing, and the absence of a black stripe near the eye, identifies a
Scarlet Tanager.

in Fig. 1 (left). Each internal node in the tree contains a trainable prototype. Our pro-
totypes are prototypical parts learned with backpropagation, as introduced in the Proto-
typical Part Network (ProtoPNet) [5] where a prototype is a trainable tensor that can be
visualized as a patch of a training sample. The extent to which this prototype is present
in an input image determines the routing of the image through the corresponding node.
Leaves of the ProtoTree learn class distributions. The paths from root to leaves represent
the learned classification rules. To this end, a ProtoTree consists of a Convolutional Neu-
ral Network (CNN) followed by a binary tree structure and can be trained end-to-end
with a standard cross-entropy loss function. We only require class labels and do not need
any other annotations. To make the tree differentiable and back-propagation compatible,
we utilize a soft decision tree, meaning that a sample is routed through both children,
each with a certain weight. We present a novel routing procedure based on the similarity
between the latent image embedding and a prototype.

A ProtoTree approximates the accuracy of non-interpretable classifiers, while being
interpretable-by-design and offering truthful global and local explanations. This way it
provides a novel take on interpretable machine learning. In contrast to post-hoc expla-
nations, which approximate a trained model or its output [6,7], a ProtoTree is inherently
interpretable since it directly incorporates interpretability in the structure of the predic-
tive model. A ProtoTree therefore faithfully shows its entire classification behaviour, in-
dependent of its input, providing a global explanation (Fig. 1). As a consequence, our
compact tree enables a human to convey, or even print out, the whole model. In con-
trast to local explanations, which explain a single prediction and can be unstable and
contradicting [8,9], global explanations enable simulatability [4]. Additionally, our Pro-
toTree can produce local explanations by showing the routing of a specific input image
through the tree (Fig. 1, right). Hence, ProtoTree allows retraceable decisions in a human-
comprehensible number of steps. In case of a misclassification, the responsible node can
be identified by tracking down the series of decisions, which eases error analysis.

Scientific Contributions
• We present an intrinsically interpretable neural prototype tree architecture for fine-

grained image recognition.
• Outperforming ProtoPNet [5] while having roughly only 10% of the number of

prototypes, included in a built-in hierarchical structure.



Figure 2. Decision making process of a ProtoTree to predict class probability distribution ŷyy of input image xxx.
During training, prototypes pppn, leaves’ class distributions ccc and CNN parameters ω are learned. Probabilities
pe (shown with example values) depend on the similarity between a patch in the latent input image and a
prototype.

• An ensemble of 5 interpretable ProtoTrees achieves competitive performance on
CUB-200-2011 [10] (CUB) and Stanford Cars [11].

2. Neural Prototype Tree

A ProtoTree combines a Convolutional Neural Network (CNN) with a binary tree. In
contrast to traditional decision trees, where a node routes a sample either right or left,
our ProtoTree is soft during training and routes a sample to both children, each with a
certain probability that together sum to 1. As shown in Figure 2, the CNN outputs a set
of feature maps, zzz. Each node n in the tree contains a prototype pppn, which is a trainable
tensor that is visualised after training. The depths of pppn and zzz are identical, such that the
distance can be calculated between a patch in zzz and pppn. This distance is converted to a
similarity score within [0,1] that determines to what extent the sample is routed through
the right edge. Multiplying all probabilities along a path results in the probability that zzz
ends up in a leaf. Subsequently, a weighted combination of all leaf distributions results
in the final prediction, as visualized in Figure 2.

Our CNN and all prototypes are jointly optimized with backpropagation. Class dis-
tributions in the leaves are learnt with a derivative-free algorithm. After training, the
learned prototypes are visualized by upsampling them to a patch from the nearest train-
ing image. We reduce tree size by pruning ineffective prototypes. Furthermore, the soft
ProtoTree can be converted to a hard, and therefore more interpretable, tree without loss
of accuracy. Lastly, to increase predictive power, we can create an ensemble by averaging
the predictions of multiple ProtoTrees.

3. Experiments and Results

We compare our ProtoTree with ProtoPNet [5] (an interpretable model which uses a
bag of class-specific prototypical parts) and a state-of-the-art black box. We evaluate on
CUB-200-2011 [10] with 200 bird species and Stanford Cars [11] with 196 car types. As
ProtoTree’s CNN backbone, we use a pre-trained ResNet50 architecture.

Table 1 shows that our ProtoTree outperforms ProtoPNet [5] in both accuracy and
interpretability. Whereas ProtoPNet presents a user an overwhelming number of proto-
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Triplet Model [12] - 87.5 n.a.

ProtoPNet [5] + 79.2 2000
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ProtoPNet ensemble (3) [5] + 84.8 6000
ProtoTree ensemble (3) + 86.6 605
ProtoTree ensemble (5) + 888777...222 1008
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4) RAU [13] - 93.8 n.a.

ProtoPNet [5] + 86.1 1960
ProtoTree (ours) ++ 86.6±0.2 111999555

ProtoPNet ensemble (3) [5] + 91.4 5880
ProtoTree ensemble (3) + 90.3 586
ProtoTree ensemble (5) + 999111...555 977

Table 1. Our ProtoTree and ensemble with 3 or 5 ProtoTrees compared with uninterpretable state-of-the-art (-)
and interpretable prototype-based models (+, ++).

types, we improve interpretability by arranging the prototypes in a hierarchical tree struc-
ture. This breaks up the reasoning process in small steps which simplifies model compre-
hension and error analysis. After pruning the tree, the number of prototypes is a factor of
10 smaller than ProtoPNet. An ensemble of 5 ProtoTrees approximates the accuracy of
uninterpretable state-of-the-art, while still having fewer prototypes than ProtoPNet.

Deterministic reasoning. A ProtoTree can be converted from a soft to a hard tree to
make deterministic predictions at test time. Selecting the leaf with the highest path prob-
ability leads to nearly the same accuracy, since the fidelity (i.e., fraction of test images
for which the soft and hard strategy make the same classification [3]) is 0.999 for a Pro-
toTree of height 9 trained on CUB. A greedy strategy performs slightly worse, but still
has a fidelity of 0.987. Results are similar for other datasets and tree heights, showing
that a ProtoTree can be safely converted to a deterministic tree, such that a prediction can
be explained by presenting one path in the tree. A deterministic ProtoTree (height = 9),
reduces the number of decisions to follow to 9 prototypes at maximum. When using a
more accurate ensemble of 5 deterministic ProtoTrees, a maximum of only 45 prototypes
needs to be analysed, resulting in much smaller local explanations than ProtoPNet.

4. Conclusion

We presented the Neural Prototype Tree (ProtoTree) for intrinsically interpretable fine-
grained image recognition. our novel architecture with end-to-end training procedure im-
proves interpretability by arranging the prototypes in a hierarchical tree structure. This
breaks up the reasoning process in small steps, thereby enhancing understandability and
reducing local explanation size. Our ProtoTree achieves competitive performance while
maintaining intrinsic interpretability. As a result, our work questions the existence of
an accuracy-interpretability trade-off and stimulates novel usage of powerful neural net-
works as backbone for interpretable, predictive models.
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